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Abstract

In this paper, a thermal-energy method is presented for calculating thermoelastic damping in micromechanical

resonators. In this method, thermoelastic damping is interpreted as the generation of thermal energy per cycle of vibration

and consequently is expressed in terms of entropy—a thermodynamic parameter measuring the irreversibility in heat

conduction. As compared with a commonly used complex-frequency method, this thermal-energy method does not involve

complex values and thus can be implemented in ANSYS/Multiphysics, a finite element modeling software, with fast speed.

Based on the governing equations of linear thermoelasticity, the mathematical expressions are first derived for

thermoelastic damping in micromechanical resonators made from isotropic and anisotropic materials, respectively.

Through two sequential numerical simulations: uncoupled elastic modal simulation and transient heat conduction, the

numerical values for these expressions are then calculated in ANSYS/Multiphysics for micromechanical resonators taking

different structural geometries. This method is verified using the well-known theoretical solution to thermoelastic damping

in a beam resonator and experimental data. As a result, the developed thermal-energy method can calculate thermoelastic

damping in micromechanical resonators with any complex structural geometry and made from isotropic and/or

anisotropic materials.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

With the advent of the Microelectromechanical Systems (MEMS) technology, micromechanical resonators
have been extensively studied for various sensing and wireless communications applications, such as
accelerometers [1,2], gyroscopes [3–5], oscillators [6–8], and electrical filters [9,10]. For all these applications, it
is important to design and fabricate micromechanical resonators with very high quality factors or very little
energy loss, because a high quality factor directly translates to high signal-to-noise ratio, high resolution, and
low power consumption. Due to its small size, it is feasible to package a micromechanical resonator in a
vacuum and thereby eliminate air damping. Consequently, other loss mechanisms, such as thermoelastic
damping (TED), support loss, and surface loss, now come to the fore [11–14], and become major bottlenecks
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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for micromechanical resonators’ performance. Among these loss mechanisms, TED has been identified as the
fundamental limit for the attainable quality factor of a micromechanical resonator [12]. To this end, it is of
significant importance to analyze TED, not only for improving the performance of micromechanical
resonators, but also for establishing their performance limits.

The laws of thermodynamics predict that a variation of strain in a solid is accompanied by a variation of
temperature, which causes an irreversible flow of heat [15]. This heat conduction further gives rise to an
increase in entropy and consequently to dissipation of vibration energy. This process of energy dissipation is
commonly referred to as TED. The theory of thermoelasticity has been well established [16]. The coupled
equations of linear thermoelasticity in various infinite geometries have been analytically solved [15,17–19].
However, there are few analytical solutions to TED in finite geometries, in that the repeated reflections of
thermoelastic waves at the boundary make the mathematical derivation very complicated [15].

In the 1930s, Zener [20,21] derived an approximate expression for TED in rectangular beams with flexural-
mode vibrations. His theory showed that TED in a beam exhibits a Lorentzian behavior with a single thermal
relaxation time. This relaxation time is related to the width b of the beam and the thermal diffusivity w of the
structural material used. Currently, TED has received great attention, due to its significance in
micromechanical resonators as described above. For instance, Lifshitz and Roukes [12] have provided an
exact solution to the thermoelastic equations in micro/nanomechanical beam resonators, predicting a modified
Lorentzian behavior of TED, while TED in ring gyroscopes [22,23] has also been addressed.

All the aforementioned works are based on the fundamental assumption that thermoelastic coupling is very
weak and has negligible influence on the uncoupled elastic vibration modes of a mechanical resonator, so the
elastic and thermal problems are essentially decoupled. Following this assumption, TED is calculated using a
complex-frequency method in which TED is expressed in terms of a complex resonant frequency [12].
Recently, the numerical implementation [24] of this method has been conducted in the COMSOL software,
where several partial differential equations are numerically solved with complex frequency values being
involved. However, our experience shows that implementing large numerical models based on the complex-
frequency method is extremely computationally intensive for calculating TED. We reason that this might be
due to the fact that a numerical model based on the complex-frequency method needs to deal with complex
values. Thus, it is very difficult, if not impossible, to apply the complex-frequency method to TED in those
micromechanical resonators with complex structural geometries.

To address this problem, we have developed a thermal-energy method that is based on the very essence of
TED: the dissipation of vibration energy is permanently converted into thermal energy. Therefore, one may
calculate TED by seeking the generation of thermal energy per cycle of vibration. As compared to the
complex-frequency method, this thermal-energy method does not involve complex values and thus can be
implemented in ANSYS/Multiphysics with fast speed.

This paper is organized as follows. The following section presents the governing equations of linear
thermoelasticity in general. Section 3 presents the thermal-energy method for calculating TED and provides its
mathematical expressions. The numerical implementation of this method in a finite element modeling software,
ANSYS/Multiphysics, is described in Section 4. The significant insights of this work are concluded at the end.

2. Problem formulation

Although the theory of linear thermoelasticity has been well established and some work has been done on
investigating TED in mechanical resonators with different structural geometries, the governing equations of linear
thermoelasticity are not comprehensively documented. Thus, this section provides a detailed description of the
governing equations of linear thermoelasticity for micromechanical resonators made from isotropic and anisotropic
materials, respectively. In particular, due to the popularity of single crystal silicon (SCS) as the structural material for
micromechanical resonators, the related governing equations associated with SCS are also included in this section.

2.1. Isotropic materials

Consider a micromechanical resonator made from an isotropic material and initially at a uniform
temperature T0. In a Cartesian coordinate system xi ¼ (x1, x2, x3), the elastic strain can be expressed in terms
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of the three displacement components ui ¼ (u1, u2, u3) in tensor form and vector form, respectively [25]:

�i;j ¼ ui;j for i ¼ j and �ij ¼
1
2
ðui;j þ uj;iÞ for iaj, (1a)

f�gT ¼ f�11 �22 �33 �23 �13 �12g, (1b)

where subscripts i, j ¼ 1, 2, 3; eij is the strain tensor at a point in the resonator; and ui,j (or uj,i) denotes the first-
order derivative of the ith (or jth) displacement component with respect to the spatial variable xj (or xi).

Then, the relations between the elastic stress, the elastic strain, and the temperature variation y ¼ T�T0 are
written in tensor form and vector form, respectively, as below [25,26]:

sij ¼ 2m�ij þ l
X3
i¼1

�ii � by for i ¼ j and sij ¼ m�ij for iaj, (2a)

sT ¼ ½s11 s22 s33 s23 s13 s12�, (2b)

where l and m are Lame coefficients and b is a coefficient related to thermal expansion effect of the resonator.
In terms of the material properties, these coefficients can be expressed in three-dimensional (3D) cases and
two-dimensional (2D) cases, respectively, as below:

l3D ¼
uE

ð1þ uÞð1� 2uÞ
; m3D ¼

E

2ð1þ uÞ
and b3D ¼

aE

ð1� 2uÞ
, (3a)

l2D ¼
uE

1� u2
; m2D ¼

E

2ð1þ uÞ
and b2D ¼

aE

ð1� uÞ
, (3b)

where E, u, and a are the Young’s modulus, Poisson’s ratio, and linear thermal expansion coefficient of the
structural material used, respectively.

According to the Newton’s second law, the governing equation of motion in the absence of body forces can
be written as

sij;j ¼ r €ui, (4)

where r is the density and the superposed double dot on the displacement component ui denotes its second-
order derivative with respect to time t. Therefore, the governing equation for the elastic vibrations in a
micromechanical resonator takes the following format:

ðlþ mÞuj;ij þ mui;jj � by;i ¼ r €ui. (5)

Now, we analyze heat conduction in the micromechanical resonator. According to the Fourier law for heat
conduction in isotropic media, the heat flux is related to the temperature gradient by the following expression:

qi ¼ �ky;i, (6)

where qi is the ith component of the heat flux vector fqg due to the temperature gradient y,i along the xi

variable direction and k, the thermal conductivity of the structural material. As compared to the initial
temperature T0, the temperature variation y is extremely small. Therefore, based on the definition of entropy,
the following relation exists:

qi;i ¼ �T0r_s, (7)

where _s is the rate of the entropy density (Note: the unit of s is J kg�1K�1).
In the absence of internal heat sources, the governing equation for thermal energy accounting for the

interaction between the temperature variation and the elastic strain is written as [27]

r_s ¼ b
X3
i¼1

_�ii þ
rCP

T0

_y, (8)

where CP is the specific heat of the structural material and _y and _�ii are the rate of the temperature variation
and the rate of the normal elastic strains, respectively. Combining Eqs. (6)–(8) leads to the governing equation
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for heat conduction:

ky;ii � rCP
_y ¼ T0b

X3
i¼1

_�ii. (9)

From the above derivation, the governing equations of linear thermoelasticity for a micromechanical
resonator made from an isotropic material are summarized as below:

ðlþ mÞuj;ij þ mui;jj � by;i ¼ r €ui, (10a)

ky;ii � rCP
_y ¼ T0b

X3
i¼1

_�ii. (10b)

Note that Eqs. (10) are the same as the governing equations of linear thermoelasticity in scalar form presented
in Ref. [24]. While the last term on the left side of the elastic Eq. (10a) represents the stress caused by the
temperature variation in the resonator, the term on the right side of the heat conduction Eq. (10b) represents
the temperature variation resulted from the elastic dilatation, which is expressed as the summation of the three
normal elastic strains

P3
i¼1�ii. These two terms are the factors coupling the elastic vibrations and the

temperature variation together.

2.2. Anisotropic materials

Here, we consider a micromechanical resonator made from an anisotropic material and initially at a
uniform temperature T0. The elastic strain in this resonator can be written the same as Eq. (1). Then, the stress
caused by the elastic strain and the temperature variation y is written as

sij ¼ cijkl�kl � bijy, (11a)

where i, j, k, l ¼ 1, 2, 3; cijkl is the fourth-order tensor of the elastic stiffness and bij ¼ cijklakl is the
thermoelastic coupling tensor, where akl is the thermal expansion tensor. For clarity, the vector form of
Eq. (11a) can be written as below:

r ¼ ce� by, (11b)

where

bT ¼ ½b11 b22 b33 b23 b13 b12�, (12)

aT ¼ ½a11 a22 a33 a23 a13 a12�, (13)

c ¼

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

2
6666666664

3
7777777775
. (14)

Note that the thermoelastic coupling tensor can be further expressed in terms of the elastic stiffness matrix c
and thermal expansion vector a:

b ¼ ca. (15)
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According to the Newton’s second law, the governing equation of motion in the absence of body forces can
be written as

sij;j ¼ r €ui. (16)

Therefore, the governing equation for the elastic vibrations in a micromechanical resonator takes the
following format:

r €ui ¼
1
2cijklðuk;lj þ ul;kjÞ � bijy;j. (17)

As to heat conduction in the micromechanical resonator, a modified Fourier law for heat conduction in
anisotropic media is written in tensor form and vector form, respectively, as below:

qi ¼ �kijy;j , (18a)

q ¼ kfq1 q2 q3gTy, (18b)

where

q ¼ fq1 q2 q3g
T, (19)

j ¼

j11 j12 j13

j21 j22 j23

j31 j32 j33

2
664

3
775, (20)

where j is the thermal conductivity matrix. Based on the definition of entropy, the following relation exists:

qi;j ¼ �T0r_s, (21)

where qi,j is the first-order derivative of the ith component of the heat flux vector j with respect to the xj

variable. In the absence of internal heat sources, the governing equation for thermal energy accounting for the
interaction of the temperature variation and the elastic strain is written in tensor form and vector form,
respectively, as below:

r_s ¼ bij _�ij þ
rCP

T0

_y, (22a)

r_s ¼ b_eT þ
rCP

T0

_y, (22b)

where _�ii is the rate of the elastic strain eij, and the two vectors b and e take the form of Eqs. (1b) and (12),
respectively. Combining Eqs. (18), (21), and (22) leads to the governing equation for heat conduction in the
resonator in tensor form:

kijy;ij � rCP
_y ¼ T0bij _�ij . (23)

In summary, the governing equations of linear thermoelasticity for a micromechanical resonator made from
an anisotropic material are as follows:

1
2
cijklðuk;lj þ ul;kjÞ � cijklakly;j ¼ r €ui, (24a)

kijy;jj � rCP
_y ¼ T0bij _�ij . (24b)

While the second term on the left side of the elastic Eq. (24a) represents the stress caused by the temperature
variation, the term on the right side of the heat conduction Eq. (24b) represents the temperature variation
resulted from the elastic strain.



ARTICLE IN PRESS
Z. Hao et al. / Journal of Sound and Vibration 322 (2009) 870–882 875
2.3. Single crystal silicon

In the MEMS field, SCS has been intensively used as the structural material for micromechanical
resonators. Therefore, this subsection focuses upon tailoring the equations in Section 2.2 to SCS resonators.
These types of resonators have only three independent elastic constants and its elastic stiffness matrix can be
written as below:

c ¼

c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

2
6666666664

3
7777777775
. (25)

Furthermore, the thermal properties of SCS do not show any dependence on orientations. Consequently,
according to Eq. (15), the following expression for b can be obtained:

b ¼ ½c11aþ 2c22a c11aþ 2c22a c11aþ 2c22a 0 0 0�T. (26)

Thus, the governing equations of linear thermoelasticity for SCS resonators are written as

1
2
cijðuk;lj þ ul;kjÞ � cijakly;j ¼ r €ui, (27a)

k
X3
i¼3

y;ii � rCP
_y ¼ T0ðc11 þ 2c12Þa

X3
i¼1

_�ii. (27b)

3. Thermal-energy method

As described in Section 2, the governing equations of linear thermoelasticity are well established. Therefore,
calculating TED becomes a well-defined problem—solve the two coupled equations for the dissipation of
vibration energy per cycle of vibration. So far, TED has been tackled from the perspective of elastic
vibrations—the dissipation of vibration energy. In fact, besides interpreted as the dissipation of vibration
energy, TED can also be interpreted as the generation of thermal energy per cycle of vibration, which is the
very essence of TED [19]. Therefore, one may calculate TED by seeking this generation of thermal energy—
referred to as thermal-energy method in this work. This thermal-energy method is based on the well-accepted
assumption described previously that thermoelastic coupling is very weak and has negligible influence on
the uncoupled elastic mode of a mechanical resonator, so the elastic and thermal problems are essentially
decoupled.

Now, we describe the procedure of deriving the mathematical expression for the generation of thermal
energy. It should be emphasized that, as compared to the complex-frequency method [12], this thermal-energy
method differs in that:
(1)
 The resonant frequency, elastic vibrations, and temperature variation all hold real values.

(2)
 While the elastic vibrations are assumed to be time-harmonic, the temperature variation is not time-

harmonic any more.
Following the aforementioned assumption, the uncoupled elastic vibration modes from the elastic equation
are further assumed and their corresponding elastic strain is derived. Then, the substitution of the elastic strain
into the heat conduction equation leads to the expression for the temperature variation in the resonator. Upon
knowing the temperature variation, the generation of thermal energy can be derived using a parameter in the
thermal field-entropy.
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Considering heat conduction in a micromechanical resonator made from an anisotropic material, we can
calculate the rate of the total entropy increase S of the whole resonator by irreversible heat conduction [25]:

_S ¼ �

Z
V

qi;j

T
dv ¼ �

Z
V

divðqÞ

T
dv ¼ �

Z
V

div
q

T

� �
dvþ

Z
V

qr
1

T

� �
dv, (28)

where the integrand is integrated across the whole volume of the resonator and T denotes the absolute
temperature at a point in the resonator. Upon being transformed into a surface integral, the first integral on
the right side of the equation becomes zero because of the adiabatic condition at the boundary of the
resonator. Thus, Eq. (28) can be simplified as

_S ¼

Z
V

qr
1

T

� �
dv ¼

Z
V

q
rT

T2
dv. (29)

Based on the definition of entropy, the rate of the generated thermal energy is written as

_Q ¼

Z
V

q
rT

T
dv ¼

Z
V

jry
ry
T0

dv, (30)

where the relation y5T0 is used. Now, we integrate Eq. (30) over one time period of vibration t0 and obtain
the mathematical expression for TED in a micromechanical resonator made from an anisotropic material:

DQ ¼

Z t0

0

Z
V

jry
ry
T0

dvdt. (31)

Consequently, for a micromechanical resonator made from a thermally isotropic material or SCS, the above
equation can be simplified as below:

DQ ¼

Z t0

0

Z
V

jðryÞ2

T0
dv dt. (32)

Once TED DQ is obtained, the quality factor related to TED QTED for a micromechanical resonator can be
calculated as

QTED ¼ 2p
W

DQ
, (33)

where W denotes the stored maximum elastic vibration energy per cycle of vibration.

4. Numerical implementation

In order to calculate the mathematical expressions, Eqs. (31) and (32), for TED, we need to conduct the
numerical implementation which consists of the following three steps:
(1)
 We simulate the uncoupled elastic vibrations, Eq. (10a) or (24a) or (27a), in a micromechanical resonator
to obtain the elastic strain ei,j and the stored maximum elastic vibration energy, W.
(2)
 The elastic strain obtained from the uncoupled elastic simulation is converted into the internal heat source,
according to the following expressions:

T0b_e
T ðanisotropic materialsÞ, (34a)

T0b
X3
i¼1

_�ii ðisotropic materialsÞ, (34b)

T0ðc11 þ 2c12Þa
X3
i¼1

_�ii ðsingle crystal siliconÞ. (34c)
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To obtain the temperature variation y, the transient heat conduction, Eq. (10b) or (24b) or (27b), in the
(3)

resonator with the internal heat source of Eqs. (34), is simulated. Processing the thermal simulation results
according to Eq. (31) or (32) gives rise to the calculation of TED, and further leads to the quantitative
prediction of the QTED from Eq. (33).
The above procedure has been implemented in ANSYS/Multiphysics with Element Solid45 for isotropic
materials and Element Solid64 for anisotropic materials. Since processing the simulation results virtually takes
no time, the running time is approximately the combination of the time for elastic vibrations and that for
transient heat conduction, thereby leading to fast speed. Based on this procedure, the QTED values for
micromechanical resonators with different geometries have been simulated. Table 1 summarizes the material
properties of the three typical structural materials used in fabrication of micromechanical resonators. Fig. 1
compares the simulated QTED using the thermal-energy method (with Element Solid45) and the corresponding
QTED from the theoretical solution to beam resonators [12] with different aspect ratios of beam length to beam
width (note that the beam width is fixed at 4 mm). This comparison shows excellent agreement toward the right
side of the Debye peak, where maximum TED occurs, and thus demonstrates the validity of this method.
Now, we address the difference between the simulated QTED values and the theoretical QTED values toward
the left side of the Debye peak. Note that the dashed lines in Fig. 1 represent the percentage difference between
the simulated frequency and the theoretically calculated frequency based on the Euler–Bernoulli beam theory
for clamped–free and clamped–clamped beam resonators. These dashed lines clearly show that as the beam
length/width ratio decreases (a chubby beam) [28], the percentage difference between the simulated frequency
and the theoretically calculated frequency goes up. This indicates that the Euler–Bernoulli beam theory does
not hold toward the left side of the Debye peak. Therefore, the difference between the simulated QTED values
and the theoretical QTED values toward the left side of the Debye peak is due to the fact that the theoretical
solution, which is based on the Euler–Bernoulli beam theory, is not valid toward the left side of Debye peak,
while the thermal-energy method does not have such limitations.

We further apply this thermal-energy method to other micromechanical resonators with complex
geometries. Figs. 2–5 illustrate the simulated elastic vibration modes and energy loss distribution (the
integrand in Eq. (32)) due to TED in a tuning-fork structure, a block resonator, and a disk resonator,
respectively. The structural geometrical parameters are taken from the literature [6,32–34]. Fig. 6 illustrates
the simulated elastic vibration mode and energy loss distribution due to TED in a tuning-fork structure with
three flexural beams, which we have recently designed for improving the QTED in the tuning-fork structure
shown in Fig. 2. Its scanning electron microscope (SEM) picture and measured frequency response from a
network analyzer are illustrated in Fig. 7.

Table 2 compares the simulated QTED and the measured quality factor for those micromechanical
resonators illustrated in Figs. 2–7, showing good agreement in the sense that the simulated QTED values are
larger than the corresponding measured Q values, which consist of other loss mechanisms, such as support loss
and surface loss. In particular, it is found from this comparison that TED is the dominant loss for the two
tuning-fork structures shown in Figs. 2, 3, and 6, while it is not a concern for the disk resonator and the block
resonator. It is worth mentioning that this numerical implementation is also applicable to a micromechanical
le 1

sical properties of three typical structural materials for micromechanical resonators.

erials Single crystal silicon [29] Polysilicon [24] Polydiamond [30,31]

son’s ratio – 0.22 0.12

tic modulus (GPa) c11 ¼ 166

c12 ¼ 65 157 1120

c44 ¼ 80

sity (kgm�3) 2330 2330 3440

rmal conductivity (Wm�1K�1) 90 90 1400

ific heat (J kg�1K�1) 700 700 565

ar thermal expansion coefficient (K�1) 2.6� 10�6 2.6� 10�6 1.0� 10�6
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Fig. 1. Comparison between the well-known theoretical solution to the QTED in a flexural-mode beam resonator and the simulated QTED

using the thermal-energy method (note that polysilicon is assumed to be the structural material and the beam width is fixed at 4mm): (a)

Clamped–free beam and (b) Clamped–clamped beam. — theoretical QTED; m simulated QTED; - - - percentage difference between the

simulated frequency and the theoretically calculated frequency.

Fig. 2. Simulated elastic vibration mode and energy loss distribution due to thermoelastic damping for the drive-mode of a tuning-fork

gyroscope made from single crystal silicon: (a) elastic vibration mode and (b) energy loss distribution.

Z. Hao et al. / Journal of Sound and Vibration 322 (2009) 870–882878
resonator made from different structural materials, as far as the appropriate equations are identified for these
materials. Moreover, this thermal-energy method is capable of predicting energy loss distribution due to TED.
This feature will facilitate the design optimization of a micromechanical resonator for a higher QTED.

Since it takes only a few minutes for a personal computer (Intel Core2 Duo 6300 with 2GB RAM) to
calculate TED in those complex geometrical structures with large finite element model sizes (element No.
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Fig. 3. Simulated elastic vibration mode and energy loss distribution due to thermoelastic damping for the sense-mode of a tuning-fork

gyroscope made from single crystal silicon: (a) elastic vibration mode and (b) energy loss distribution.

Fig. 4. Simulated elastic vibration mode and energy loss distribution due to thermoelastic damping for a block resonator made from single

crystal silicon: (a) elastic vibration mode and (b) energy loss distribution.

Fig. 5. Simulated elastic vibration mode and energy loss distribution due to thermoelastic damping for a disk resonator with a side-

support beam and made from single crystal silicon: (a) elastic vibration mode and (b) energy loss distribution.

Z. Hao et al. / Journal of Sound and Vibration 322 (2009) 870–882 879
44000) as illustrated in Table 2, this thermal-energy method is very efficient. To further demonstrate great
efficiency of this thermal-energy method as compared to the complex-frequency method, we consider a
clamped–clamped flexural beam resonator of 400 mm� 20 mm� 12 mm (L� h� b) [24]. We simulate TED in
this beam resonator with four model sizes in COMSOL using the complex-frequency method and in ANSYS
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Fig. 6. Simulated elastic vibration mode and energy loss distribution due to thermoelastic damping for a single crystal silicon tuning-fork

structure with three flexural beams: (a) elastic vibration mode and (b) energy loss distribution.

Fig. 7. The scanning electron microscope (SEM) picture and experimental measurement of a tuning-fork structure with three vibration

beams: (a) scanning electron microscope picture and (b) the measured frequency response showing Qmeasured ¼ 136,550 at 19.35 kHz.

Table 2

Comparison between the simulated QTED using the thermal-energy method and the measured Q of micromechanical resonators with

different geometries.

Materials Calculated QTED Measured Q Frequency (kHz) Element number Running

time (min)

Tuning-fork (drive-mode) [32,33] 87,635 81,000 17,219 4,576 3:09

Tuning-fork (sense-mode) [32,33] 83,563 64,000 17,149 4,576 3:02

Tuning-fork with three flexural beams 176,204 136,550 19,211 4,360 6:23

Block resonator [6] 1,551,876 180,000 11,900 729 0:33

Disk resonator [34] 7,153,088 39,300 148,000 4,440 8:01

Flexural beam resonator [24] 10,439 10,281 636 4,000 2:25

Z. Hao et al. / Journal of Sound and Vibration 322 (2009) 870–882880
using the thermal-energy method, respectively, with the above-mentioned personal computer. As summarized
in Table 3, the running time with different model sizes for these two methods clearly illustrates great efficiency
of the thermal-energy method presented in this work.
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Table 3

Comparison of the running time between the complex-frequency method implemented in COMSOL and the thermal-energy method

implemented in ANSYS for calculating thermoelastic damping in a flexural beam resonator [24] with different model sizes.

Model size (element no.)

Running time (s) 200 600 1200 1600

Running time in COMSOL using complex-frequency method 66.89 84.15 105.625 Out of memory

Running time in ANSYS using thermal-energy method 18.26 42.78 51.54 59.22

Z. Hao et al. / Journal of Sound and Vibration 322 (2009) 870–882 881
5. Conclusion

From the perspective of thermal field, a thermal-energy method has been developed for calculating TED in
micromechanical resonators. By interpreting TED as the generation of thermal energy per cycle of vibration,
this method takes the advantage of a thermodynamic parameter-entropy which quantitatively measures the
irreversibility in heat conduction, to formulate TED. Its theoretical derivation and numerical implementation
has been described in great details. The validity of this method has been further demonstrated by comparing
with the well-known solution to TED in a beam resonator and experimental data. With the advantages of
involving no complex values and fast-speed implementation in ANSYS/Multiphysics, this thermal-energy
method applies to micromechanical resonators with any complex geometry and made from anisotropic and/or
isotropic materials.
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